Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(7)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37509667

RESUMO

BACKGROUND: Safe values for quantitative perfusion parameters of indocyanine green (ICG) angiography have not been fully defined, and interpretation remains at the surgeon's discretion. This prospective observational study aimed to establish the safe values for the quantitative perfusion parameters by comparing tissue oxygenation levels from HSI images in laparoscopic colorectal surgery. METHODS: ICG angiography was performed using a laparoscopic near-infrared (NIR) camera system with ICG diluted in 10 mL of distilled water. For quantitative perfusion parameters, the changes in fluorescence intensity with perfusion times were analyzed to plot a time-fluorescence intensity graph. To assess real-time tissue oxygen saturation (StO2) in the colon, the TIVITA® Tissue System was utilized for hyperspectral imaging (HSI) acquisition. The StO2 levels were compared with the quantitative perfusion parameters derived from ICG angiography at corresponding points to define the safe range of ICG parameters reflecting good tissue oxygenation. RESULTS: In the regression analysis, T1/2MAX, TMAX, slope, and NIR perfusion index were correlated with tissue oxygen saturation. Using this regression model, the cutoff values of quantitative perfusion parameters were calculated as T1/2MAX ≤ 10 s, TMAX ≤ 30 s, slope ≥ 5, and NIR perfusion index ≥50, which best reflected colon StO2 higher than 60%. Diagnostic values were analyzed to predict colon StO2 of 60% or more, and the ICG perfusion parameters T1/2MAX, TMAX, and perfusion TR showed high sensitivity values of 97% or more, indicating their ability to correctly identify cases with acceptable StO2. CONCLUSION: The safe values for quantitative perfusion parameters derived from ICG angiography were T1/2MAX ≤ 10 s and TMAX ≤ 30 s, which were associated with colon tissue oxygenation levels higher than 60% in the laparoscopic colorectal surgery.

2.
J Minim Invasive Surg ; 25(3): 106-111, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36177370

RESUMO

Purpose: Trocar-site burns occurring during laparoscopic surgery have been reported in various cases, and several efforts to reduce them are underway. This study aimed to analyze the effect of capacitive coupling on trocar site by observing electrical and histological changes for electrical skin burn injury. Methods: To measure the electrical changes relating to capacitive coupling, the temperature, current, voltage, and impedance around the trocar were measured when an open circuit and a closed circuit were formed using insulation intact instruments and repeated after insulation failure. After the experiment, the tissue around the trocar was collected, and microscopic examination was performed. Results: When open circuits were formed with the intact insulation, the impedance was significantly reduced compared to the cases of closed circuits (142.0 Ω vs. 109.3 Ω, p = 0.040). When the power was 30 W and there was insulation failure, no significant difference was measured between the open circuit and the closed circuit (147.7 Ω vs. 130.7 Ω, p = 0.103). Collagen hyalinization, nuclear fragmentation, and coagulation necrosis suggesting burns were observed in the skin biopsy at the trocar insertion site. Conclusion: This study demonstrated that even with a plastic trocar and electrosurgical instruments that have intact insulation, if an open circuit is formed, capacitive coupling increases, and trocar-site burn can occur. When using electrocautery, careful manipulation must be taken to avoid creating an open circuit to prevent capacitive coupling related to electrical skin burn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...